
Solutions to the Exam Part 2 (June 2021)

Advanced Empirical Finance
General remarks
The exam is a written assignment consisting of two parts:

• Part 1: The first part is based on one of the mandatory assignments worked on during
the course. The student can use the peer feedback received during the course to improve
this assignment.

• Part 2: The second part is a new assignment given in English.

The part consists of 4 problems. All problems must be solved. Hand-in a pdf with your
solutions together with the associated Rmarkdown file or the R script that replicates your
results. The source code has to create every figure, table and number used for your report.
The approximate weight of each problem is stated. A problem can consist of different sub-
questions that do not necessarily have equal weight. Within the report describe every major
step and make sure that tables and figures are self-explanatory by providing meaningful
captions and variable names.

To solve the exam, you get access to two datasets: spy_data.rds and equity_premium_data.rds
which can be imported in R with the function tidyverse::read_rds().

Problem 1 (Realized volatility, 20%)
Import the file spy_data.rds which contains a tibble with 2 columns: ts are minute-level
time stamps and price contains the corresponding minute level close price for SPY, an ETF
that tracks the S&P 500 index. The sample starts in August 1998 and ends in December
2019. For each day with regular trading hours the observations start at 09:35:00 and end at
15:55:00.

Problem: Compute the daily realized volatility based on minute-level observations. Clearly
state the estimator in your report. Compute the daily close-to-close return and visualize
the time-series of daily prices, returns and realized volatilities (you can assume the last
observation per day corresponds to the close price).

Solution: The code below implements the required computations. The realized variance on
day T is simply computed as

RVT :=
Tt∑

i=2
r2

i,T

1



where T denotes the trading day, Tt is the number of observed minute level prices on that
day and ri,T := log(PT,i)− log(PT,i−1) are the minute-level log returns where PT,i is the i-th
price observation on the trading day. The figure below illustrates the daily close-to-close (log)
returns, prices and the realized volatility estimate (square root of the realized variance).
library(tidyverse)
library(lubridate)
library(kableExtra)
library(hms)
library(scales)
Sys.setenv(TZ='GMT')

data <- read_rds("spy_data.rds")

# Compute daily close-to-close returns and realized volatilities
daily_data <- data %>%
group_by(ts = as.Date(floor_date(ts, "day"))) %>%
mutate(return = (log(price) - log(lag(price)))) %>% # Intra-day returns
summarise(price = last(price), # close price

RV = 100 * sqrt(sum(return ˆ2, na.rm = TRUE))) %>% # Realized volatility in percent
mutate(return = 100 * (log(price) - log(lag(price)))) %>% # Daily close-to-close returns in percent
drop_na(return)

# Visualize time series
daily_data %>%
pivot_longer(-ts, names_to = "Variable") %>%
mutate(Variable = str_to_sentence(Variable)) %>%
ggplot(aes(x = ts, y = value)) +
geom_line() +
facet_wrap(~Variable, ncol = 1, scales = "free_y") +
theme(legend.position = "bottom") +
scale_x_date(breaks = function(x) seq.Date(from = min(x), to = max(x), by = "1 years"),

minor_breaks = function(x) seq.Date(from = min(x), to = max(x), by = "1 years"),
expand = c(0,0),
labels = date_format("%y")) +

labs(x = "", y = "")
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Figure 1: Time-series of daily SP 500 prices, returns and realized volatilies

• Problem: Provide meaningful summary statistics for the returns and the realized
volatility and discuss the dynamics of the realized volatility time-series.

Solution: The choice and presentation of some summary statistics can obviously differ.
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Table 1: Summary statistics: Values denote averages (standard deviations in brackets). Price
is in USD, Return in percent and Rv is the annualized realized volatility

Price Return Rv
1998 - 2001 89.29 (9.52) 0.03 (1.34) 27.02 (8.71)
2001 - 2001 73.28 (8.98) -0.02 (1.39) 18.99 (7.29)
2004 - 2001 89.28 (7.38) 0.04 (0.66) 9.6 (2.45)
2007 - 2001 94.05 (18.13) -0.02 (1.82) 19.65 (13.9)
2010 - 2001 104.72 (10.87) 0.04 (1.15) 12.5 (6.57)
2013 - 2001 165.52 (19.2) 0.06 (0.77) 8.82 (3.92)
2016 - 2001 226.5 (30.15) 0.03 (0.8) 8.61 (5.64)
2019 - 2001 279.07 (14.05) 0.11 (0.81) 8.6 (3.91)

Below I do provide a table based on grouped annual information regarding the time series.
In combination with the Figure from exercise 1.2 one can conclude that realized volatility
exhibits the “common” stylized facts such as persistence (optimally illustrated with the
sample autocorrelation coefficients) and time-variation. Intuitively it should make sense that
the “usual” periods of extreme distress such as the global financial crisis exhibit particular
high volatility. The table includes the standard variation and mean for prices, but one can
of course argue that for such obvious non-stationary time series the interpretation of the
sample moments is difficult. Instead it is more meaningful to consider returns which have
been positive on average.
# Summary statistics (in 3 year buckets)
daily_data %>%

mutate(RV = RV * sqrt(250)) %>% # annualized values
pivot_longer(-ts) %>%
mutate(name = str_to_title(name)) %>%
group_by(year = year(ceiling_date(ts, "3 years")), name) %>%
summarise(mean = mean(value, na.rm = TRUE),

sd = sd(value, na.rm = TRUE)) %>%
mutate(Mean = paste0(round(mean, 2), " (", round(sd, 2), ")")) %>%
select(-mean, -sd) %>%
ungroup() %>%

mutate(year = paste0(year - 3, " - ", min(2019, year))) %>%
pivot_wider(names_from = name, values_from = Mean) %>%
rename(" " = year) %>%
kable(caption = "Summary statistics: Values denote averages (standard deviations in brackets).

Price is in USD, Return in percent and Rv is the annualized realized volatility")

- Problem: Provide a brief discussion why the realized volatility may be subject to market
microstructure noise and what the potential implications for realized volatility estimation
are. Which sampling frequency should one choose in the absence of microstructure noise?

Solution: Microstructure frictions such as bid-ask spreads, asynchronous trading time,
strategic order placement and endogenous liquidity provisioning do render the efficient price
process unobservable and instead one usually assumes that the observed prices contain
measurement error. Therefore, while it is theoretically optimal to sample at the highest
frequency possible, market microstructure noise requires careful treatment in order to reduce
the bias in the realized volatility estimator. Usually the literature proposes adjustments,
e.g. based on sampling on different time scales, to overcome these issues. In the example
above, sampling at high frequencies without adjusting for the presence of microstructure
noise could lead to a biased estimate of the realized volatility.
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Problem 2 (Volatility estimation, 25%)
Compute two measures of the (conditional) daily S&P 500 return volatility σ2

t =
Var (rt|rt−1, . . . , r1) based on the daily close-to-close returns: i) the rolling return standard
deviation (based on the last 250 trading days) and ii) the conditional volatility based on a
GARCH(1, 1) model

• Problem: Briefly state the estimation framework and explain the intuition behind the
GARCH(1,1) specification. Which stylized facts of return time series justify (generalized)
autoregressive conditional heteroscedasticity models and which potential shortcomings
do you see in the selected GARCH(1,1) specification?

Solution: The GARCH(p,q) model is given by

rt = µt + εt where εt = σtzt σ2
t = α0 +

p∑
j=1

αjε
2
t−j +

q∑
i=1

βiσ
2
t−i.

Positive σ2
t is ensured by α0 ≥ 0, αi ≥ 0, βj ≥ 0. µt can be computed sequentially. By

constructing the conditional volatility as an autoregressive process, GARCH models can (up
to a certain extent) capture persistence in the volatility. Estimation can be conducted via
simple MLE, e.g. using the log likelihood function under the normality assumption for zt

logL (θ|r1) = log f (r2|r1θ) + . . .+ log f (rT |rt−1, . . . , r1, θ)

= −T2 log(2π)−
T∑

t=2

(
log(σ2

t ) + (rt − µt)2

2σ2
t

)

where σ2
t and µ2

t are computed recursively. Obvious restrictions of a GARCH(1,1) model
include the pre-specified lag selection which may be sub-optimal as well as the presence of
leverage effects which may call for asymmetric responses to past shocks.

• Problem: Illustrate the time-series of estimated conditional volatilities.

Solution: The figure below also contains the RV estimator for the sake of completeness.
# Volatility estimation
library(slider)
library(rugarch)
model.spec <- ugarchspec(variance.model = list(model = 'sGARCH' , garchOrder = c(1 , 1)))
model.fit <- ugarchfit(spec = model.spec , data = daily_data %>% pull(return))

daily_data <- daily_data %>%
mutate(Rolling = slide_dbl(return, sd,

.before = 250)) %>%
mutate(Garch = (sigma(model.fit))) %>%
unnest(Garch)

daily_data %>%
select(ts, return, everything(), -price) %>%
na.omit() %>%
pivot_longer(-c(ts, return), names_to = "Model", values_to = "sigma") %>%
ggplot(aes(x = ts,

y = sqrt(sigma),
color = Model)) +

geom_line(alpha = 0.5) +
labs(x = "", y = "Estimated Volatility") +
theme(legend.position = "bottom") +
scale_x_date(breaks = function(x) seq.Date(from = min(x), to = max(x), by = "1 years"),

minor_breaks = function(x) seq.Date(from = min(x), to = max(x), by = "1 years"),
expand = c(0,0),
labels = date_format("%y"))
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Figure 2: Comparison of daily conditional volatilities

• Problem: Discuss the differences between the two estimated conditional volatility
dynamics and the potential implications for portfolio allocation decisions and risk
management.

Solution: The most straightforward difference is of course the slow moving change for the
rolling standard deviation in the conditional volatility based on long estimation windows. As
a result, the rolling window estimates do not capture fast changes in the economy (market
volatility). A GARCH model, instead, which incorporates the term ε2

t−1 can react faster to
more recent events. As a result, when comparing to the realized volatility, the GARCH model
is very likely to provide better forecasts of future volatility. This is especially desirable when
it comes to capital budgeting and risk management decisions. More accurate forecasts reduce
capital requirements and improve allocational efficiency. On the other hand, in the presence
of transaction costs it may be desirable to “smooth” allocation decisions over longer time
horizons.

Problem 3 (Equity premium estimation, 25%)
Read in the dataset equity_premium_data.rds.
welch_data <- read_rds("equity_premium_data.rds")

It contains 6 columns with monthly data. date denotes the month, tms (Term Spread), dfy
(Default Yield Spread), bm (Book-to-Market Ratio) and svar (Stock Variance) are predictors
from the dataset in the paper “A Comprehensive Look at the Empirical Performance of Equity
Premium Prediction” by Goyal and Welch (2008). rp_div_lead is the equity premium
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one-month ahead defined as the difference between the (log) US market return and the
risk-free rate in the next month.

• Problem: Discuss why macroeconomic variables could qualify as predictors for the
equity risk premium. Would such return predictability contradict the notion of efficient
markets?

Solution: While market efficiency naturally imposes an upper bound on asset return
predictability, it is not at odds with efficient markets if the equity risk premium is predictable.
The equity risk premium resembles the required compensation of investors for bearing the
market risk. This compensation depends on the risk aversion and, more specifically, on
the marginal utility from consumption. Business cycles during which consumption is low
(high marginal utility) represent periods during which a higher compensation is required.
Macroeconomic variables that predict consumption therefore qualify as predictors for the
equity risk premium.

• Problem: Compute monthly one-step ahead equity premium forecasts based on a simple
rolling window predictive regression specification of the form

rt+1 = α + b1tmst + b2dfyt + b3bmt + b4svart + εt

where rt+1 is the one-month ahead equity premium. State and justify your chosen
estimation window length in the report. To generate predictions, first estimate the
parameters α̂, β̂1, . . . , β̂4 and then compute the prediction r̂t+1 = α̂ + b̂1tmst + b̂2dfyt +
b̂3bmt + b̂4svart. Illustrate your predictions relative to the realized equity premia.

Solution: The sample code is below. I have choosen 10 years of monthly data in order
to capture long-run components in the business cycle. The obvious problem of shorter
estimation windows is the resulting higher variance in the estimator which may induce
additional estimation uncertainty. From a statistical perspective the choice of the window
length depends on the structure of the data: If the data series are stationary, then more
observations clearly reduces the estimation uncertainty.

The figure below illustrates the limited amount of information in the predictive regression.
predictive_regression <- function(x) {

if (nrow(x) < 30) { # minimum requirement for number of observed variables
result <- tibble(date = x %>% filter(row_number() == n()) %>% pull(date),

pred_return = NA)
} else {
x_old <- x[-nrow(x), ]
reg <- lm(rp_div_lead ~ tms + dfy + bm + svar, data = x_old)
result <- tibble(date = x %>% filter(row_number() == n()) %>% pull(date),

pred_return = predict(reg, x[nrow(x), ]))
}
output <- result %>%
mutate(rp_div_lead = x %>% filter(row_number() == n()) %>% pull(rp_div_lead))

return(output)
}

predicted_equity_premium <- slide_index_dfr(welch_data,
welch_data$date,

~predictive_regression(.x),
.before = months(120),
.complete = FALSE) %>%

na.omit()

predicted_equity_premium %>%
rename("Prediction" = pred_return,

"Realized" = rp_div_lead) %>%
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pivot_longer(-date, names_to = " ") %>%
ggplot(aes(x = date,

y = value,
color = ` `)) +

geom_line() +
labs(x = "Year", y = "Equity premium") +
theme(legend.position = "bottom") +
scale_x_date(breaks = function(x) seq.Date(from = min(x), to = max(x), by = "1 years"),

minor_breaks = function(x) seq.Date(from = min(x), to = max(x), by = "1 years"),
expand = c(0,0),
labels = date_format("%y")) +

geom_hline(aes(yintercept = 0), linetype = "dotted")
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Figure 3: Equity premium and predictive regressions
daily_data <- daily_data %>%
mutate(month = floor_date(ts, "month")) %>%
left_join(predicted_equity_premium, by = c("month" ="date")) %>%
na.omit() %>%
select(-month)

• Problem: Discuss the forecasting approach in light of the results in the paper “Empirical
Asset Pricing via Machine Learning” by Gu, Kelly and Xiu (2020). What are potential
shortcomings of the predictive linear regression framework and what measures could
one take to improve the predictive performance?

Solution: Gu, Kelly and Xiu (2020) focus on predicting the entire cross-section of stock
returns instead of the market risk premium and do find benefits of applying machine learning
methods for financial forecasting. More specifically, their results indicate that linear models
are outperformed out-of-sample relative to nonlinear methods such as neural networks and
regression trees and that shrinkage is key. The predictive regression from above neither
features nonlinearities (e.g. reflecting that especially during periods during which firms exhibit
financial distress required risk premia increase substantially, whereas economic upturns do
not reflect such extreme shifts). Given the limited predictive ability, the predictive regression
may benefit from imposing regularization methods such as Lasso or Ridge-regressions in order
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to decrease the dimensionality of the problem even further.

Problem 4 (Static portfolio allocation with a single risky asset,
30%)
Consider the following portfolio choice problem: Two assets are available to an investor at
time t. One is riskless with risk-free rate rf . The risky asset is the market portfolio with
conditional mean µt = Et(rt+1) and conditional variance σ2

t = Vart (rt+1). The investor puts
a share αt of her wealth into the market and (1 − αt) in the risk-free asset. The investor
follows myopic mean-variance optimization such that

α∗
t = arg max

a
Et(rpf,t+1)−

γ

2Vart (rpf,t+1)

where rpf,t+1 are the portfolio returns from t until t+ 1 and γ is the risk-aversion.

• Problem: Derive the optimal investment α∗
t as a function of γ, σ2

t , µt and rf .

Solution: The investor allocates a fraction α of wealth to the risky asset and the remainder
to the risk-free asset. The resulting portfolio return is thus

rpf, t = αrt + (1− α)rf = rf + α(rt − rf ).

The expected portfolio return is E(rpf,t) = rf + αE(rt − rf ) and the variance is Var (rpf,t) =
α2σ2

t . As a result, the optimization problem is simply

α∗
t = arg max

a
αE(rt − rf )− γ

2α
2σ2

t = µt − rf

γσ2
t

.

• Problem: Suppose γ = 4 and rf = 0 and set µt to the sample average of the annualized
close-to-close returns of the S&P 500 (from Exercise 1). Use your estimated annualized
conditional covariances σ̂2

t (GARCH, the rolling window from Exercise 2 and RVt from
Exercise 1) and compute the resulting allocation α∗

t into the market for each day t
for each of the three different volatility models. Discuss if the time series of α̂∗

t seems
intuitive: During which periods does the investor decide to implement a high exposure
to the market risk?

Solution: The first panel in the Figure below illustrates the resulting fractions of wealth, α,
invested in the market portfolio, proxied for by SPY, the S&P 500 tracking ETF. In general,
the investment can exceed 100% - in that case, the investor simply borrows at the risk-free
rate and invests the proceeds into the market. It is also not surprising that the investment is
strictly positive at all times because the average market risk premium was positive during
the last 30 years and σ2

t > 0. As expected, the investment decreases in σt and the time-series
of α’s therefore indicates that during volatile periods the investor tends to store her wealth
in the risk-free asset to mitigate the increase in market risk. The setup therefore implies
something which could be termed “flight-to-safety” as long as the volatility estimate/forecast
reflects changes in the economy.

8



# Allocation of wealth in market and risk-free rate (assumed to be 0)

sample_mu <- daily_data %>% pull(return) %>% mean() * 250

optimal_alpha <- function(sigma, mu = sample_mu, gamma = 4){mu / (gamma * sigma ˆ2)}

estimated_alphas <- daily_data %>%
select(-c(price, rp_div_lead)) %>%
pivot_longer(-c(ts, return, pred_return), names_to = "Model", values_to = "sigma") %>%
mutate(alpha = map_dbl(sigma,

function(.) optimal_alpha(sigma = sqrt(250) * .)),
alpha_return = map2_dbl(sigma, pred_return,

function(., pred_return) optimal_alpha(sigma = sqrt(250) * .,
mu = 12 * pred_return)))

estimated_alphas %>%
select(ts, Model, "1. Volatility only" = alpha, "2. Volatility + Equity premium" = alpha_return) %>%
pivot_longer(-c(ts, Model)) %>%
ggplot(aes(x = ts,

y = value,
color = Model)) +

geom_line(alpha = 0.5) +
facet_wrap(~name, scales = "free_y", ncol = 1) +
theme_minimal() +
labs(x = "Year", y = "Fraction invested in market") +
theme(legend.position = "bottom") +
scale_x_date(breaks = function(x) seq.Date(from = min(x), to = max(x), by = "1 years"),

minor_breaks = function(x) seq.Date(from = min(x), to = max(x), by = "1 years"),
expand = c(0,0),
labels = date_format("%y"))

2. Volatility + Equity premium

1. Volatility only
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Figure 4: Investments in the market portfolio

• Problem: Briefly discuss how the investor could adjust for estimation uncertainty in
her investment decision. How, do you expect, would the resulting optimal investment
in the market portfolio change?

Solution: A common procedure would be to make use of Bayesian methods that rely on
explicitly deriving the posterior predictive distribution of the returns which accounts for
uncertainty in the estimated parameters. Such a setup is usually accompanied by imposing
fatter tails on the return distribution and therefore implicitly reflects higher risk in the
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investment decision. Depending on the utility function that could entirely change the
investment strategy of the investor. In the case of a mean-variance framework the resulting
investment into the market portfolio is going to be less (|α| would be lower) than in the case
above where the investor ignores estimation uncertainty. The smaller |α| therefore reflects
the risks due to estimation uncertainty.

• Problem: What is the resulting Sharpe ratio? What do the results imply with respect
to the predictive performance of the individual volatility models?

Solution: The question is answered together with the following question.

• Problem: What is the resulting Sharpe ratio if you instead suppose that µt changes
each month according to your annualized equity return predictions µ̂t from Problem 3?
Can you conclude that macroeconomic variables improve the portfolio performance?

Solution: The table below illustrates the annualized Sharpe ratios of the different allocation
strategies (with and without making use of the predictive regressions). There is a clear
increase in the average returns when taking high-frequency data into account. At the same
time, the resulting portfolio return standard deviation as a measure of the riskiness of the
investment is highest when using the RV estimator. The table reveals that the GARCH
specification does not necessarily deliver superior results relative to the rather naive rolling
window estimation. In terms of Sharpe ratios, the rolling window framework even performs
best when ignoring the additional information from the predictive regression. Incorporating
additional information from Exercise 3 has two major effects: The variation in the portfolio
holdings increases, negative excess return predictions are associated with shorting the market.
Despite the noise, the macroeconomic predictors seem to convey some information and
improve the out-of-sample performance substantially. As a result, high-frequency data paired
with macroeconomic data delivers the highest possible Sharpe ratio.
# Out-of-sample performance
estimated_alphas %>%
select(ts, return, Model, "1. Volatility only" = alpha, "2. Volatility + Equity premium" = alpha_return) %>%
pivot_longer(-c(ts, return, Model)) %>%
group_by(Model, name) %>%
mutate(out_of_sample_return = value * lead(return, 1)) %>%
na.omit() %>%
summarise(mu = 250 * mean(out_of_sample_return),

sd = sqrt(250) * sd(out_of_sample_return),
`Sharpe Ratio` = mu / sd) %>%

rename(" " = name) %>%
kable(booktabs = TRUE,

digits = 3,
caption = "Out-of-sample performance of the implemented allocation strategies. mu and sd are the annualized average return and standard deviation")

• Problem: Suppose rebalancing is costly. What would be your expectation on how the
performance of the individual models changes if the investor would not incorporate
transaction costs into her decision?

Solution: If rebalancing is costly but the investor would nevertheless follow her strategies,
a higher variation in changes of the portfolio structure, Var (αt − αt−1) would harm the
out-of-sample performance. The figure above illustrates that the realized volatility and
GARCH models imply very high turnover and would thus be penalized more severely than
the rolling window approach based on a long estimation window. If the structure of the
transaction costs is known, the investor could obviously adjust her behavior in the spirit of
Hautsch et al (2019).

10



Table 2: Out-of-sample performance of the implemented allocation strategies. mu and sd are
the annualized average return and standard deviation

Model mu sd Sharpe Ratio
Garch 1. Volatility only 0.050 0.125 0.400
Garch 2. Volatility + Equity premium 0.119 0.235 0.504
Rolling 1. Volatility only 0.064 0.127 0.501
Rolling 2. Volatility + Equity premium 0.217 0.431 0.503
RV 1. Volatility only 0.119 0.250 0.479
RV 2. Volatility + Equity premium 0.257 0.400 0.644
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