
Solutions to selected mandatory assignment

Advanced Empirical Finance
Transaction cost robust portfolio optimization (inspired by Hautsch et al (2019),
available in Absalon)
For the empirical analysis, use the file data_mandatory_assignment_3.RData (available on Absalon) which
can be imported with the command load(). Loading the file provides you with two tibbles in your environment:
returns and amihud_measures.
load("data_mandatory_assignment_3.RData")

returns <- returns %>%
select(-date) %>%
mutate_all(~./100) %>%
as.matrix() %>%
na.omit()

N <- ncol(returns)

Data description: The object returns contains T = 500 daily log returns in percent for N = 40 assets. I
extracted the returns from the daily CRSP file and cleaned the data already. The tibble amihud_measures
contains a measure for illiquidity of the individual assets. For each ticker, the column illiquidity provides
you with the (log of) full sample Amihud measure. The measure is based on Amihud (2002) and is popular in
the literature because it only requires data about returns and volume to compute. For a detailed description
of the Amihud measure consult the textbook Empirical Asset Pricing and the cross-section of stock returns
in Absalon, Chapter 13. All you need to know for this assignment is that larger values in the column
illiquidity indicate stocks that are costlier to trade than tickers with lower values.1

Exercise 1. (30%)
Consider the portfolio choice problem for transaction-cost adjusted certainty equivalent maximization with
risk aversion parameter γ

ω∗t+1 := arg max
ω∈RN ,ι′ω=1

ω′µ− νt(ω, β)− γ

2ω
′Σω

where Σ and µ are (estimators of) the variance-covariance matrix of the returns and the vector of expected
returns. Assume for now that transaction costs are quadratic in rebalancing and proportional to stock
illiquidity such that

νt (ω, β) := β

2 (ω − ωt+)′B (ω − ωt+)

where B = diag(ill1, . . . , illN ) is a diagonal matrix where ill1, . . . , illN correspond to the Amihud measures
provided to you. β ∈ R+ is a cost parameter and ωt+ := ωt ◦ (1 + rt)/

∑N
i=1(ωi,t(1 + ri,t)) is the weight vector

before rebalancing. ◦ denotes element-wise multiplication. Note that rt+1 are the log returns log (Pt+1/Pt)
and the data in returns is in percent!

Problem: Derive a closed-form solution for the mean-variance efficient portfolio ω∗t+1 based on the transaction
cost specification above. Discuss the effect of illiquidity illi on the individual portfolio weights relative to an
investor that myopically ignores transaction costs in her decision.

1The source code used to create the files, including the Amihud measure is available in Absalon.

1



Solution: Substituting yields

ω∗t+1 := arg max
ω∈RN ,ι′ω=1

ω′µ− β

2 (ω − ωt+)′B (ω − ωt+)− γ

2ω
′Σω

= arg max
ω∈RN ,ι′ω=1

ω′ (µ+ βBωt+)− γ

2ω
′
(

Σ + β

γ
B

)
ω.

The resulting closed form solution for the efficient portfolio has been derived in the lecture slides (Part 3,
slide 24) where the parameters µ and Σ are replaced with µ+ βBωt+ and Σ̃ := Σ + β

γB, respectively, such
that we get

ω∗t+1 = 1
γ

(
Σ̃−1 − 1

ι′Σ̃−1ι
Σ̃−1ιι′Σ̃−1

)
(µ+ βBωt+) + 1

ι′Σ̃−1ι
Σ̃−1ι.

Intuitively, illiquid assets (high values of illi) are costlier to rebalance. In fact, the optimal weights reflect
the costs by implictly reinstalling mean-variance optimization with the adjusted expected return vector
(µ+ βBωt+) which is high for illiquid assets with high current holdings. Thus, illiquid assets are treated as if
they yield a more attractive risk-return trade-off if the current exposure ωt+ is already high and vice versa.
As shown in the lecture slides (Part 3, slide 31), the optimal readjustment converges towards ωt+ as β or illi
approaches infinity.

Problem: Write a function that computes the optimal weights ω∗t+1 based on the inputs µ,Σ, γ, β, ill1, . . . , illN
and the current weights ωt+ . You can assume γ = 4 throughout the entire assignment.

optimal_tc_weight_l2 <- function(w_prev,
mu,
Sigma,
beta = rep(0, ncol(Sigma)),
gamma = 4){

N <- ncol(Sigma)
if(length(beta) == 1) beta <- rep(beta, N)
B <- diag(beta)
iota <- rep(1, N)
Sigma_proc <- Sigma + 1 / gamma * B
mu_proc <- mu + B %*% w_prev

Sigma_inv <- solve(Sigma_proc)

w_mvp <- Sigma_inv %*% iota
w_mvp <- w_mvp / sum(w_mvp)
w_opt <- w_mvp + 1/gamma * (Sigma_inv - w_mvp %*% t(iota) %*% Sigma_inv) %*% mu_proc
return(w_opt)

}

Exercise 2. (15%)
Problem Illustrate the convergence of the portfolio towards the efficient portfolio in the spirit of Proposition
4 in Hautsch et al. (2019): Use the full sample to estimate µ and Σ (you are free regarding the method to
estimate µ and Σ but state your estimator and model assumptions in the report) and assume that the initial
allocation, ω0, is the naive portfolio 1

N ι. Then, compute iteratively the rebalanced portfolio weights ω∗t+1
which takes ω∗t as input (thus you can ignore the distorting effect of returns for now and assume ωt+ = ωt).
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Find a meaningful illustration of the weight dynamics towards the efficient portfolio and use the illustration
to discuss the effect of illiquidity on the convergence towards the the efficient portfolio.

Solution: There are multiple feasible ways to illustrate the main feature of transaction cost penalization. The
code below rests on using the sample moments but other approaches such as Ledoit Wolf shrinkage or a
factor model are accepted as well.
# Mean-variance efficient portfolio
w_opt <- optimal_tc_weight_l2(w_prev = rep(1/N, ncol(returns)),

mu = colMeans(returns),
Sigma = cov(returns),
beta = 0 * amihud_measures$illiquidity,
gamma = 4)

weights <- matrix(NA, nc = ncol(returns), nr = 1000)
weights[1, ] <- rep(1/N, ncol(returns))
for(i in 2:nrow(weights)){

weights[i, ] <- optimal_tc_weight_l2(w_prev = weights[i-1, ],
mu = colMeans(returns),
Sigma = cov(returns),
beta = 2 * amihud_measures$illiquidity,
gamma = 4)

}

colnames(weights) <- colnames(returns)

The following two figures do illustrate the convergence towards the efficient portfolio but do not allow to
investigate asset specific illiquidity.
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The following two illustrations illustrate that more illiquid assets (identified by a higher value illi converge
slower to the efficient portfolio.
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Exercise 3. (35%)
Problem: Implement a function that takes a value for the transaction cost parameter β as input and returns
the out-of-sample Sharpe ratio of a corresponding backtest with a rolling window of length 250 days. Assume
the initial allocation ω0 is the naive portfolio. To be more precise: The function should recompute the optimal
portfolios each day by taking the last 250 days of data into account to compute sample estimates µ̂ and Σ̂.2
The optimal allocation according to the optimization problem above should take the current allocation ωt+
into account and depends on the illiquidity measures. For each day, compute the realized portfolio return
ω∗t+1

′rt+1 and subtract the realized transaction costs νt(ω∗t+1, β). The out-of-sample (annualized) Sharpe
ratio is then computed as

√
250 µ̂

pf

σ̂pf where µ̂pf and σ̂pf are the sample out-of-sample average return and
standard deviation, respectively (thus you can assume a risk-free rate of 0 for the computation of the Sharpe
ratio).
window_length <- 250
periods <- nrow(returns) - window_length # total number of out-of-sample periods

compute_sr <- function(beta = 0,
beta_suppose = NA_real_){

beta_suppose <- if_else(is.na(beta_suppose), beta, beta_suppose)
oos_values <- matrix(as.double(NA),

nrow = periods,
ncol = 1) # A matrix to collect all returns

2You can consider alternative estimators for µ̂ and Σ̂. If you do so, explain your approach in the report.
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w_prev_1 <- rep(1/N ,N)

for(i in 1:periods){ # Rolling window

# Extract information
return_window <- returns[i : (i + window_length - 1),]

# Sample moments
Sigma <- cov(return_window)
mu <- 0 * colMeans(return_window)

# Optimal TC robust portfolio
w_1 <- optimal_tc_weight_l2(w_prev = w_prev_1,

mu = mu,
Sigma = Sigma,
beta = beta_suppose * amihud_measures$illiquidity,
gamma = 4)

# Evaluation
raw_return <- 1 + returns[i + window_length, ] %*% w_1
turnover <- t(w_1 - w_prev_1) %*% diag(amihud_measures$illiquidity) %*% (w_1 - w_prev_1)
# Store realized returns
net_return <- raw_return - beta * turnover
oos_values[i, 1] <- c(net_return)
#Computes adjusted weights based on the weights and next period returns
w_prev_1 <- w_1 * as.vector(1 + returns[i + window_length, ])
w_prev_1 <- w_prev_1 / sum(as.vector(w_prev_1))

}
sr <- apply(oos_values, 2, function(.) sqrt(250) * mean(. - 1 ) / sd(. - 1)) %>%

as_tibble()
return(sr)
}

Problem: Illustrate the effect of different values of the transaction cost parameter β on the out-of-sample
Sharpe ratio. β should take values between 0 to 100. Discuss your results.

Solution: The figure below illustrate the effect of different transaction cost parameters β on the out-of-sample
Sharpe ratio. Similar to Figure 1 in Hautsch et al (2019), a higher penalization of transaction costs can
lead to an increase in performance due to the implied shrinkage effect which helps to mitigate estimation
uncertainty. The figure illustrates at first a decrease in performance (as one would expect if there would be
no effect on estimation error but only on the penalization of turnover) and then a sharp increase again.

Problem: Is it always optimal to choose the same β in the optimization problem than the β used in evaluating
the portfolio performance? In other words: Can it be optimal to choose theoretically sub-optimal portfolios
based on transaction costs considerations that do not reflect the actual incurred costs? Provide a brief
discussion.

Solution The red line in the figure below illustrates the out-of-sample performance for a supposed β of 5,
irrespective of the actual applied turnover penalization which affects the out-of-sample Sharpe ratio. In
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these scenarios, the penalty parameter implies a theoretical sub-optimal portfolio which, however, does not
necessarily imply a decrease in out of sample performance. Instead, the figure illustrates that for higher
values of β until about 130 the resulting out-of-sample performance would have been better than taking the
theoretically optimal value of the penalty factor β. These findings are in line with Hautsch et al (2019).
beta_effect <- tibble(beta = 200 * qexp((1:99/100))) %>%

mutate(sr = map(beta, compute_sr),
sr_5 = map(beta, compute_sr, beta_suppose = 5)) %>%

unnest(c(sr, sr_5), names_sep = "_") %>%
pivot_longer(-beta)

beta_effect %>%
mutate(value = if_else(value < 0, NA_real_, value)) %>%
ggplot(aes(x = beta, y = value, color = name)) +
geom_line() +
labs(x = "Transaction cost parameter",

y = "Out-of-sample Sharpe Ratio")
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Exercise 4. (20%)
Problem: Implement a full-fledged portfolio backtesting strategy with proportional L1 transaction costs and
suppose that β = 50/10000 = 50bp as in Equation (12) of Hautsch et al. (2019) such that

v(ωt+1, ωt+ , β) = β||ωt+1 − ωt+ ||1 = β

N∑
i=1
|ωi,t+1 − ωi,t+ |.
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Your aim is to generate a strong out-of-sample portfolio performance after adjusting for the proportional L1
transaction costs. In order to improve the portfolio performance, you are free to compute parameter estimates
either based on Ledoit-Wolf linear shrinkage towards the equicorrelation matrix or other approaches such as
a rolling window multivariate DCC Garch or a factor model volatility model. Briefly describe your chosen
model, the forecasting procedure and discuss the effects on the out-of-sample portfolio performance.

Irrespective of the way you estimate µt and Σt, the simulation should compare the performance of the
following strategies: a. The naive portfolio which rebalances daily to ω = 1

N ι b. A portfolio which computes
the theoretical optimal portfolio weights with optimal ex-ante adjustment for transaction costs in the spirit
of Hautsch et al. (2019), e.g. that implements

ω∗t+1 := arg max
ω∈RN ,ι′ω=1

ω′µ− β||ωt+1 − ωt+ ||1 −
γ

2ω
′Σω

c. A mean-variance efficient portfolio with a no short-selling constraint in the spirit of Jagannathan and Ma
(2003)

To evaluate the performance of each strategy, the out-of-sample portfolio returns net of transaction costs
should be aggregated into the out-of-sample Sharpe-Ratio and the average Turnover (Equations 44, and 46 in
Hautsch et al., 2019).

Discuss the results: Which portfolio strategy performed best after adjusting for transaction costs and what
are possible reasons for the differences in performance?
Note for the optimization: For the specific case with L1 transaction costs, no closed form solution is
available anymore. I recommend to use the package alabama for nonlinear constrained optimization (consult
?alabama::constrOptim.nl). —

Solution: See code and results below. Depending on the model specification (mean and variance estimator)
the results and the order can change. In the setup below, the naive portfolio outperforms all competitors
which hints at substantial estimation error with 40 assets. It is remarkable that the simple mean-variance
approach fails entirely and only after imposing additional constraints, e.g. no short-selling or turnover
penalization is do we detect any meaningful economic performance. A good discussion should include the
estimator of the moments of the return distribution and the resulting 1-step ahead forecast specification.
The discussion of the portfolio performance should focus on the trade-off between the flexibility of the
model and estimation uncertainty which implies potentially unstable portfolio weights and thus sub-optimal
out-of-sample performance.
optimal_tc_weight_l1 <- function(w_prev,

mu,
Sigma,
beta = 50 / 10000,
gamma = 4){

fn <- function(w){
obj <- w%*%as.vector(mu) -

as.numeric(beta) * sum(abs(w - w_prev)) -
gamma/2 * t(w) %*% Sigma %*% w

return(-obj)}

out <- alabama::constrOptim.nl(par = w_prev,
fn = fn,
heq = function(w) return(sum(w) - 1),
control.outer =list(trace = FALSE))

return(as.numeric(out$par))
}

8



optimal_no_short_sale_weight <- function(mu,
Sigma,
gamma = 4){

N <- ncol(Sigma)
A <- cbind(1, diag(N))

out <- quadprog::solve.QP(Dmat = gamma * Sigma,
dvec = mu,
Amat = A,
bvec = c(1, rep(0, N)),
meq = 1)

return(as.numeric(out$solution))
}

periods <- nrow(returns) - window_length # total number of out-of-sample periods

oos_values <- matrix(NA,
nrow = periods,
ncol = 3) # A matrix to collect all returns

colnames(oos_values) <- c("raw_return", "turnover", "net_return")

all_values <- list(oos_values,
oos_values,
oos_values,
oos_values)

w_prev_1 <- w_prev_2 <- w_prev_3 <- w_prev_4 <- rep(1/N ,N)

beta <- 50 / 10000
for(i in 1:periods){ # Rolling window

# Extract information
return_window <- returns[i : (i + window_length - 1),]

# Sample moments
Sigma <- cov(return_window)
mu <- colMeans(return_window)

# Optimal TC robust portfolio
w_1 <- optimal_tc_weight_l1(w_prev = w_prev_1,

mu = mu,
Sigma = Sigma,
beta = beta)

# Evaluation
raw_return <- 1 + returns[i + window_length, ] %*% w_1
turnover <- sum(abs(w_1 - w_prev_1))
# Store realized returns
net_return <- raw_return - beta * turnover
all_values[[1]][i, ] <- c(raw_return, turnover, net_return)
#Computes adjusted weights based on the weights and next period returns
w_prev_1 <- w_1 * as.vector(1 + returns[i + window_length, ])
w_prev_1 <- w_prev_1 / sum(as.vector(w_prev_1))
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# Efficient portfolio
w_2 <- optimal_tc_weight_l1(w_prev = w_prev_2,

mu = mu,
Sigma = Sigma,
beta = 0)

# Evaluation
raw_return <- 1 + returns[i + window_length, ] %*% w_2
turnover <- sum(abs(w_2 - w_prev_2))
# Store realized returns
net_return <- raw_return - beta * turnover
all_values[[2]][i, ] <- c(raw_return, turnover, net_return)
#Computes adjusted weights based on the weights and next period returns
w_prev_2 <- w_2 * as.vector(1 + returns[i + window_length, ])
w_prev_2 <- w_prev_2 / sum(as.vector(w_prev_2))

# Naive Portfolio
w_3 <- rep(1/N, N)

# Evaluation
raw_return <- 1 + returns[i + window_length, ] %*% w_3
turnover <- sum(abs(w_3 - w_prev_3))
# Store realized returns
net_return <- raw_return - beta * turnover
all_values[[3]][i, ] <- c(raw_return, turnover, net_return)
#Computes adjusted weights based on the weights and next period returns
w_prev_3 <- w_3 * as.vector(1 + returns[i + window_length, ])
w_prev_3 <- w_prev_3 / sum(as.vector(w_prev_3))

# No-short sale portfolio
w_4 <- optimal_no_short_sale_weight(mu, Sigma)

# Evaluation
raw_return <- 1 + returns[i + window_length, ] %*% w_4
turnover <- sum(abs(w_4 - w_prev_4))
# Store realized returns
net_return <- raw_return - beta * turnover
all_values[[4]][i, ] <- c(raw_return, turnover, net_return)
#Computes adjusted weights based on the weights and next period returns
w_prev_4 <- w_4 * as.vector(1 + returns[i + window_length, ])
w_prev_4 <- w_prev_4 / sum(as.vector(w_prev_4))

}

all_values <- lapply(all_values, as_tibble) %>%
bind_rows(.id = "strategy")

all_values %>%
group_by(strategy) %>%
summarise(Mean = 250 * 100 * (mean(net_return - 1)),

SD = sqrt(250) * 100 * sd(net_return - 1),
Sharpe = if_else(Mean>0, Mean/SD, NA_real_),
Turnover = 100 * mean(turnover)) %>%
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mutate(strategy = case_when(strategy == 1 ~ "MV (TC)",
strategy == 2 ~ "MV",
strategy == 3 ~ "Naive",
strategy == 4 ~ "MV (no-short selling)")) %>%

knitr::kable(digits = 3)

strategy Mean SD Sharpe Turnover
MV (TC) 26.948 40.206 0.670 0.000
MV -5127.070 4483.310 NA 195.195
Naive 32.166 42.360 0.759 2.039
MV (no-short selling) 14.047 46.755 0.300 15.156
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